La descomposición de fuerzas y una muerte en Dos Hermanas

Por Arturo Quirantes, el 1 diciembre, 2012. Categoría(s): Mecánica ✎ 9

C38

Acabo de ver las últimas noticias sobre un hombre que acaba de morir en Dos Hermanas (Sevilla). Por lo visto, este señor se había asomado al balcón cuando la baranda cedió y cayó al suelo (no al vacío). Se da la circunstancia de que colgaba un adorno de Navidad de dicha baranda. El ayuntamiento, por si las moscas, ha retirado los demás adornos de esa calle, aunque un concejal anunció en televisión que era poco probable que esa fuese la causa, siquiera parcial, de la desgracia, ya que los adornos solamente pesaban siete kilos. En efecto, si una baranda es incapaz de soportar tan poco peso, es que está para que se caiga con un soplo de aire.

Pero cuando acabó el telediario, la parte física de mi cerebro me regañó por haber llegado a una conclusión equivocada. El hecho es que siete kilos pueden hacer mucho daño si están orientados en la dirección correcta. Así que me tomé el café, me levanté del sillón y a trabajar se ha dicho.

Intente el lector atar un objeto a una cuerda y tirar de ésta. Si lo hace verticalmente, la fuerza ejercida será igual al peso del objeto (suponiendo que éste suba a velocidad constante). Pero imaginemos que usted tira oblicuamente, por ejemplo sujetando el objeto a la mitad de la cuerda y tirando del extremo. En ese caso, tendrá que ejercer una fuerza más grande, de tal modo que la componente vertical se iguale al peso. Cuanto más se acerque la cuerda a la posición horizontal, mayor será la fuerza necesaria.

Lo verá usted mejor con un diagrama. Da la casualidad de que utilizo un ejemplo similar en mis clases. En la película Spiderman (la de 2002), el Duende Verde sujeta un cable del que pende un funicular lleno de inocentes pasajeros. Esto es lo que nos encontramos:

Como ven, lo que contrarresta el peso del funicular (Mg) es la componente vertical de las dos fuerzas de tensión. La Segunda Ley de Newton nos da el valor que tiene que tener la tensión:

T=Mg/(2Senθ)

En el diagrama, la tensión T es la que tira del sistema al que está atado el cable. En el caso de la película, era el malvado Duende Verde. En Dos Hermanas, era la baranda la que sujetaba el cartel navideño. Lo llamativo del caso es que, para valores pequeños de θ, la tensión aumenta cada vez más. Para θ=10º, la tensión es igual a casi tres veces el peso. Un ángulo de 5º nos eleva la tensión a seis veces el peso. Un grado solamente, y la tensión supera al peso en 29 veces. Si alguna vez se le atasca el coche en el barro, puede aprovecharse del truco. Tienda una cuerda entre el coche y un objeto fijo (como un árbol), luego agarre la cuerda por su punto medio y tire perpendicularmente. El efecto será el mismo: una pequeña fuerza tiene un gran efecto.

Por supuesto, ni los físicos más soberbios del mundo podrán pontificar sobre la necesidad de saber más Física para evitar sucesos de este tipo. Incluso un ángulo pequeño hubiera sido insuficiente para arrancar de cuajo una baranda bien instalada. Yo supongo que se dio una combinación de circunstancias. El hijo del fallecido ya ha declarado que los tornillos que sujetaban la baranda a la pared eran muy cortos. En esas circunstancias, si los operarios tensaron demasiado el cable del adorno navideño, su peso pudo haber tenido un efecto similar al que acabo de describir. El peso de siete kilos hubiera provocado una fuerza desproporcionadamente grande contra la barandilla. Dicha fuerza se sumó al peso con que la víctima se apoyó al asomarse, y la mala instalación de la baranda hizo el resto. Imagino que es lo que tenía en mente el alcalde cuando señaló un cúmulo de circunstancias como causa del accidente. Estoy de acuerdo con él.

Y a pesar de ello, me estremezco al pensar en los mil operarios que en estos días instalan luces y adornos de Navidad por toda España. Me los imagino dando vueltas a la llave inglesa, muy voluntariosos ellos, tensando los cables con todas sus fuerzas, mientras murmuran «esto me está costando sudores, pero ahora este cable va a aguantar lo que le echen,» sin darse cuenta de que es justo lo contrario: cuanto más tenséis el cable, peor será para los vecinos. Aflojad un poco, por favor.



9 Comentarios

  1. Hola Arturo:

    Hace tiempo que no charlamos de otros temas.

    Bueno, comentarte al respecto de esta publicación que haces mención de las barandillas, pues decirte, que tienes toda la razón. De hecho, no debieron poner tanta fuerza con las tuercas a esos cables, ya que, si finalmente, aunque estén bien sujetos, pues acabarán lo que ha pasado en Dos Hermanas (como sabiamente se comentan en varios medios estos días).

    Desde luego, que si con ello, tanta fuerza como para matar a una persona así a tan poco peso, es tremendamente razonable. Cuanto más tenso es el cable, más peligro es a la hora de llegar a apretar las tuercas y los elementos que sujetan dichos cables.

    Es una pena, pero las cosas como tal van, son así.

    Saludos…

    P.S.: Tu publicación lo acabé de ver ahora, en el GReader.

  2. veamos, 21 veces 7 son apenas 140kg… si los tornillos de anclaje a la pared más los del suelo no aguantaron ese peso… mal vamos. Aun suponiendo que solo estuviera anclada a la pared por cuatro tornillos y se repartan la fuerza por partes iguales… son 35kg por tornillo, redondeando a lo bruto, 350N. Si un tornillo no soporta 350N… ¡mala cosa! Ojo al tensar cables, y más revisar los edificios también…

  3. Hombre si tenemos en cuenta que la barandilla ya soporta unos 200kg (29 * 7 = 203) y va un señor y se apoya con sus buenos 80kg… pues podemos suponer que la tensión por tornillo sube por encima de 50kg (suponiendo cuatro tornillos)… sin embargo hay que tener en cuenta que la sujeción de la barandilla depende del estado de esta (que no esté «carcomida» por el óxido) y que el cemento de la pared donde está agarrada también esté en buen estado…

    Pues eso, junta el hambre con las ganas de comer y ya tienes el lio armado.

    Un saludo

    1. Hoy estoy revisando cálculos, y para que os hagáis una idea… estamos colgando 185kg de cuatro tornillos de 4.8mm (3/16pulgadas) de diámetro. Eso son 1823N. Cada tornillo, no entre los cuatro, cada uno de ellos puede soportar 14150N!! es decir 1442kg. Vale que son de titanio, y en esas barandillas se usa acero. Tambien es cierto que en esas barandillas se usa entorno a 12.7mm (1/2 pulgadas) en vez de 4.8… así que me pregunto, ¿cómo estaban esos anclajes a la pared?

  4. Hola Arturo;
    interesantisimo como siempre y so pena de salirme del tema; podrías hacer una reseña de la película TOTAL RECALL (2012)??? que tiene tela de donde cortar barbara (un túnel para viajar desde Inglaterra a Australia atravesando el centro del planeta basta???)
    saludos desde México

Deja un comentario

Por Arturo Quirantes, publicado el 1 diciembre, 2012
Categoría(s): Mecánica
Etiqueta(s): ,